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coupling :

&I = C(I + P) ’(1 + P’(T’ – C’))/cl

= jC( 1 + p) 2 ( 1 + P26J2”) 6~a/~

leakage:

S,, = 2pCT(l + p) ’/d

= j2PCT( 1 + p) 2ei2a/d

where

d = 1 – 2P’(T2 + C’) + p4(T’ – C’)’

= 1 — 2p’ (1 — 2C2) & + p%~4”.

It is seen from these equations that if p = O the param-

eters of an ideal coupler are returned with &l = S41 = (),

1121 = T, and 8U = C. Furthermore, interchanging T and

C is seen to interchange SZI and S81. The model also shows

that for loose coupling and small imperfections, i.e., C2 <<

1 and p2 <<1, if the coupling region is a quarter-wave-

length long giving a = 7r/2 and Tz z – 1, then the input

reflection S1l = O, as mentioned previously for inter.

ference-type couplers.
This demonstrates that the simple flowgraph model of a
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practical directional coupler of Fig. 1 (b) may be used to

derive the mathematical relationships describing the

circuit, and the flowgraph may be used as a general-

purpose building, block to insert directional couplers into

larger microwave networks to be analyzed by computer-

ized flowgraph reduction programs (see footnote 2).

ACKNOWLEDGMENT

The authors wish to thank P. W. Campbell for his sK1ll

and ingenuity in constructing the couplers and the short-

to-match switches.

[1]

[2]

[3]

REFERENCES

N. Munro and P. D. McMorran, ‘Signal-flow-graph reduction,
Meson’s rule and the system matrix,” Electron. .Lett., VO1. 6, pp.
752-754, Nov. 1970.
R. W. Beatty and G. H, Fentress, “An attenuation and phase
shift divider circuit, ” Proc. IEEE (Lett.), vol. 56, pp. 2063-
2064, NOV. 1968.
W. K. Kahn and R. L. Kyhl, “The directional coupler core of
an arbitrary, lossless, reciprocal 4-port, ” Proc. IRE (Corresp. ),

vol. 49, pp. 1699–1 700, Nov. 1961.

Short Papers —

On the Existence Range of the S Parameters of a Passive

Two-Port Network

EDOARDO CARLI, MEMBER, IEEE, AND TULLIO CORZANI,
MENIBER, IEEE

Abstract—The existence range of the S parameters of a passive

two-port is analyzed and various limitations on their moduli are

deduced. In particular, it is shown that when three moduli are

given, the last, in general, may be upper and lower bounded by

passivity conditions.

I. INTRODUCTION

In the last three years some considerations on the bounds of the
VSWR of a passive two-port network have appeared in the literature
[1 ]-[3]. The authors dealt with the same subject some years ago,
investigating the existence range of the S’ parameters of a passive
two-port network. In particular, various limitations on the S param-

eters were derived. The results were used to obtain some relations
between the passivity and absolute stability conditions and to

determine the bounds of the input VSWR of a loaded passive two-
port [4]. Furthermore, the limits of the nonreciprocity of a passive
two-port and the best loss condition for an isolator were analyzed [5].

In this short paper some general limitations for the S parameters
of a passive two-port network are deduced in both the nonreciprocal

and the reciprocal case.
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In particular, it is shown that when all but one of the parameters

are known the modulus of the last parameter can be, in general,

upper and lower bounded by passivity conditions,

II. PASSIVITY CONDITIONS

For the sake of simplicity, only the case of Iossy two-port networks

will be considered; in that case the power entering the network is
always positive and the Hermitian form giving this power as a

function of the incident waves is definite positive.
The discussion of the general case of a nonnegative definite Hermi-

tian form, including lossless networks and conditionally lossy net-

works (i.e., networks whose entering power can vanish for some
particular excitations), does not modify the conclusions, whereas it

requires many involved specifications. This case is discussed in

detail in [4].
For a lossy nonreciprocal network it must be

1–]s,,12–1s2,12>0 (1)

(l–ls,, 1’)(1–1s221’) +(1–1s,212)(1 –1S’211’ )-1

–21&lls 2211s1211Js211cosCr>o (2)
where

~ = arg &l + arg &2 — arg &Z — arg fJ21. (3)

As ie well known, conditions (1) and (2) mean, respectively, that
the first element and the determinant of the dissipation matrix
(E – S*S) are positive. When these conditions hold, also the norms

of the second column and of the two rows of the S-matrix are smaller
than one.

From conditions (1) and (2) various limitations imposed by

~assivitv on the S-matrix elements can be deduced, as, for example,
~he limits on an unmeasured reflection or transmission coefficient
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15,,1> p,,]

Fig. 1. The variatiou range of I S,J ] and I S,, [ in the I S,, 1, I S,z I
plane. Fora given value of a = arg Sn + arg.fh — arg SLz — args%
the region allowed by passivity conditions m that bounded by the
curve C. and the axes. The curve Cm w = m) delimits the region of
minimum realizability conditions on the moduli of the S parameters
and Co (CZ = O) the region of passivity conditions for any value of
the arguments.

[4], [6], or the range of variation of the input reflection coetficieut The allowable regions for the moduli of the S parameters are
of a loaded passive two-port [4]. illustrated in Fig. 1. In particular, when three moduli and a are

Another case was discussed in [5], where theauthors studied the known, the last modulus is always upper bounded and in some
hypothetical case of anonreciprocal two-port measured, as if it was cases it can be also lower bounded. For example, suppose that ] S12 ],
reciprocal, by a classical input reflection coefficient measurement \ & 1, I i%, ~, and a are given; then I &l I has always an upper limit,
method as, for instance, the three-point method or Deschamps given by the following expression:

–Is,,l] s,, lls,, lcosa+ [(l – IST, I’– IJS,,I’)(1 – 1s2,1’–1 s,,/’) –\s*,l’ is,, l’]s,ll’ (1–cos’a)l’”
1s1,1< (4)

1–1s22!2

Moreover, when it is 1s,, 1 > [(1 – I s,, l’) (1 – I S’,, 12)]’/9 and r~2 < a S m, I S’U \ is also lower bounded by

–1 S,, I I S12I I & I cosa –[(1 – I fh 1’ – 1Sh 12)(1 – I S221’ – I S’,, l’) – I S,, 12I S121’ I S,I 1’(1 – Coszdl’”
ls, ,1> (5)

1–1s,212

method. In this case, from I &l 1, I S22 1, I &v’%1 1, and a experin~en-

tally obtained, the range of variation of the ratio I &2/&l 1, allowed

by the passivity conditions, can be deduced.
It is possible to give a mapping of dissipation conditions (1) and

(2), either in a transmission coefficient plane or in a driving-point
reflection coefficient plane, thus finding a region where the S’ param-
eters of a passive network can lie.

Fig. 1 shows the allowed region in the I S,, 1, \ S,, I plane; for

given values of I S,, ], I S9, 1, and a, I S11 ] and I S22 I are constrained
to lie into the region bounded by the axes and the curve C., which
is a branch of the curve obtained by equating to zero the left side
of condition (2). The figure is drawn for I S21 I > I Slz 1.

Because of the symmetry properties of condition (2), the diagram
of Fig. 1 is still valid exchanging I Sn I with I S22 \ and/or reflection
with transmission coefficients.

From Fig. 1 it can be deduced that the constraints deriving from

condition (2) are more restrictive than those obtained by making
the norms of the rows and the columns of the S-matrix smaller than

one.
In particular, when cos a ~ O, I Sn I (or I SM I) must be smaller

than [(1 – I Sl, 12) (1 – I SZI 19)]112, while, when cos a <0, I SU ]
(or I S,, I) must be smaller than the value of the coo~dillate of the
vertical (or horizontal ) line tangent to C..

III. REALIZABILITY CONDITIONS ON THE MODUL1 OF

THE S PARAMETERS

A. General Case

Generally, one is mainly interested in the bounds on the moduli
of the S parameters regardless of the value of the arguments.

Whenitis OSa Srf12,0rl S,, l S [(1 – !S1212)(1 – l&12)112
and ~/2 < a < ~, the lower bound is zero.

All the above formulas, as has already been noted in dealing with
Fig. 1, are still valid exchanging I S,1 ~with \ & I or transmission
with reflection parameters.

B. Minimum Realizability Conditions

Condition (2) may be written as

~osa<(l –is,, l’)(l–ls,, lq+ (l- 1s121’) (1–1s211’)–1

2]s11]l s22\ls1211s211

= L. (6)

From relation (6) it is seen that the minimum realizability condi-
tion on the moduli of the S parameters is L > — 1. When four
positive real numbers satisfy this latter condition they can surely be
considered as the moduli of the S-matrix elements of a passive
two-port.

Observe that, if the moduli, and so L, are given, the values of
the arguments must satisfy condition (6). Clearly, only when L >1
there IS not any limitation on the values of the arguments. This
occurs when in Fig. 1 the representative point lies in the region
bounded by the axes and the curve CO, corresponding to a = O or
L = 1. Otherwise, when this point lies in the region bounded by
COand C.(a = ror L = –l),it is –1 <L <1 andthe values of
the arguments cannot be arbitrary but must satisfy the condition

cos a < L.

In the case of the minim-ml realizability conditions, I L% \ and

~S2~ ] must lie in the regiou bounded by the axes and the curve C.. It
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can be noted that \ &I \ (or ] &z\) has the same upper bound as parameters of a passive 10SSY nonreciprocal two-port,’ “ 1EJ313

that deriving from condition (l), but thk limit corresponds only
Trans. Microwave Theory Tech. (Short Papers), vol. MTT-21, pp.
135-136! Mar. 1973.

tothe value of 18221 (orltil) givenlv [4] E. Carh and T. Corzani, “Sulle propriet& a una frequenza dells
matrice di diffusion di una rete a clue porte passiva, ” AUU Z%YJ,,

]s221 = (1s1,/s2, 1)(1 –1s211’) ’/’.
vol. 36, pp. 319-328, Apr. 1967.

[5] — “Sulla non reciprocit~ di una rete a due porte passiva, ” Note
Recekioni e Notizie, Istituto Superiore delle Poste e Telecomuni-

Ifthree moduliare given, e.g., l&zl, l&l, andl&ll, thebounds cazioni, Rome, Italy, vol. 17, pp. 792-800, Sept.–Ott. 196S.

imposed bypasskity on the last, I &I 1, are the following:
[6] R. LaRosaand H. J. Carlin, “A general theory of wideband match-

ing with dissipative 4-poles, ” J. Math. Phvs., vol. 33, Jan. 1955.

lS2211S1211tS211-[(1- lS2212-l&12)(l –lszzlz –lszd’)l’j, <l~,,l
1–1s22!2

<
~s’2211sMls211+[(l —IJS’2212- IS1212 )(1 —ls2212—ls21p)]1/2

l–~s22p
. (7)

Thelower bound in condition (7) isgreater than zero oniywhen

1s2,1 >[(1–ls1215) (l–l&12)l’/’ (8)

as also clearly reeults from Fig. 1. Multiconductor Transmission Lines and the Green’s

C. Passivity Conditions for Any Valueoj the Arguments Matrix

When the values of themoduli are such that condition >1 is
satisfied the arguments of the tlparameters canassume everv value. L. GRUNER, MEMBER, IEEE

In Fig. 1 the a~owed region for 1-6’,, I and \ S,, I is now that bounded

by the axes and the curve CO. Abstract-It is shown that the study of arbitrarily terminated

In particular, when I S22 1, I S12 1, and I & I are given, in order multiconductor transmission lines which may in general be 10SSY

that the passivity conditions for any value of the arguments hold, and sub jetted to excitation applied at an arbitrary point along the

the last modulus, \ SII 1, must satisfy the condition limes, may be effectively performed with the aid of the appropriate

/s,,/<
–1s,211s,211 s,ll+[(l– /s22]2–1s,21’)(1 –Is,, p-is,, l’)]’lz

(9)
l–!szzp

IV. RECIPROCAL NETWORKS Green’s matrix. The procedure is illustrated

When the two-port network is reciprocal (S,, = S,,), the mini- method of impedance measurement as well

mum realizability condition (7) becomes strip lines.

I 812p
–l<l&,\<l-

1$s121’
(lo)

1–/s221 1+1s221”

The lower bound in condition (9) is positive only if

1s221>1–1s121’. (11)

Furthermore, the passivity conditions for any value of the argu-
ments (9) reduces to

(12)

The same relations hold for I 5’,, 1, exchanging \ S’,, ~ with ~i% 1.

As regards the limits imposed on the modulus of the transmission
coefficient s12, when I & I and I S22 I are given they are easily found

from condition (2).

In the case of the minimum passivity conditions, one obtains [6]

Ifh < [u + I S1l I)(l – I i3221)l’/’ (13)

when I fl~l ~ g I Szz 1, and

l&21 <[(1 – lslll )(1 +1s221)1’/2 (14)

when / S’U ~ > I &Z 1.

If the passivity conditions for any value of the arguments we to

be verified, it must be

] S121 < [(1 – I &ll)(l — I S221)T’2. (15)

The latter conditions are also directly deducible from Fig. 1,

exchanging transmission with reflection coefficients and observing
that, in the reciprocal case, the allowed values of \ S]? I = I S21 I
are lying on the bisecting line.

I. INTRODUCTION

using the Chipmsn

as coupled micro-

There is a considerable body of literature dealing with multi-
conductor transmission lines [1 ]–[4] which are encountered in

such diverse contexts as microstrip directional couplers, overmoded

waveguides, shielded pair instrumentation cables, etc., to mention

but a few applications.
While known procedures are useful in dealing with various special-

ized cases, it will be shown that the use of the Green’e matrix tech-
nique makes it possible to deal with a very wide range of situations,
including excitation by voltage and current sources applied at points
not necessarily coinciding with the end terminals.

In what follows we shall consider a multiconductor transmission
line comprising n distinct conductors (which maybe 10SSY) in addi-

tion to the ground path. We find that [2] in the sinusoidal steady

state

[:1=[-:‘:I[2+EI ‘1)
where V, 1, V’, 1’, Es, and 1,s are n-dimensional column vectors
while Z and Y are n X n square matrices. Furthermore, V, lj Z,
Y, Es, I,s, and x have the usual meaning of voltage, current, imped-

ance per unit length, admittance per unit length, applied voltage
per unit length, applied current per unit length and distance, respec-
tively, while a prime denotes differentiation with respect to z.

II. THE MULTICONDUCTOR LINE GREEN’S MATRIX

With reference to Cole [5], a system of 2n differential equations

u’ = Au +~(z) (2)
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